Roll No. of Questions: 091

Total No. of Questions: 09] [Total No. of Pages: 02

B.Tech. (Sem. - 5th)

NUMERICAL ANALYSIS

<u>SUBJECT CODE</u>: EE - 311 / AM - 351

<u>Paper ID</u>: [A0418]

[Note: Please fill subject code and paper ID on OMR]

Time: 03 Hours

01)

Maximum Marks: 60

 $(10 \times 2 = 20)$

Instruction to Candidates:

- 1) Section A is Compulsory.
- 2) Attempt any Four questions from Section B.
- 3) Attempt any Two questions from Section C.

Section - A

a) How Secant method is better than method of False Position?

- b) State the conditions when Newton Raphson method fails.
- c) Explain the concept of pivoting.
- d) Give principle of least squares method.
- e) Give properties of triangular matrices.
- f) Give formula for composite Simpson's rule.
- g) Define the operators Δ , ∇ , E and μ .
- h) Write Newton's backward difference formula for derivatives.
- i) Using Picard's method to find first approximation of $\frac{dy}{dx} = x + y^2$, y(0) = 1.
- j) Give the name of 3 numerical methods for solving ordinary differential equation.

Section - B

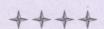
 $(4 \times 5 = 20)$

Q2) Using Regula Falsi method, find a root of the equation $2x = \cos x + 3$, upto 4 decimal places.

J-836 [8129]

P.T.O.

Q3) Using Gauss elimination method with partial pivoting, solve
$$\begin{bmatrix} 2 & 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} -10 \end{bmatrix}$$


$$\begin{bmatrix} 2 & 1 & 1 & -2 \\ 4 & 0 & 2 & 1 \\ 3 & 2 & 2 & 0 \\ 1 & 3 & 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} -10 \\ 8 \\ 7 \\ -5 \end{bmatrix}.$$

- Q4) Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$, using Trapezoidal rule by taking 7 subintervals.
- Q5) Using Taylor's series method, find y at x = 0.1 and 0.2 upto 3 decimals from $\frac{dy}{dx} = x^2y 1, y(0) = 1.$
- **Q6)** Using modified Euler's method, solve y(0.3) from $\frac{dy}{dx} = x + y$, y(0) = 1. (Take h = 0.1)

$$(2 \times 10 = 20)$$

- Q7) (a) Using Runge Kutta method of order 4, find y(0.2) upto 3 decimals from $\frac{dy}{dx} = y^2 + x$, y(0) = 1.
 - (b) What is meant by the term 'order' in Runge Kutta method of order 4?
- **Q8)** (a) Find approximate value of f'(1.1), from the following data

- (b) Use LU decomposition to solve 3x + 2y + 7z = 4; 2x + 3y + z = 5; 3x + 4y + z = 7.
- Q9) Solve the system of non-linear equations $x^2 + y = 11$, $x + y^2 = 7$, by using Newton-Raphson method. Carry out two iterations. (Take $x_0 = 3.5$, $y_0 = -1.8$)

